Mean squared error of prediction (MSEP) estimates for principal component regression (PCR) and partial least squares regression (PLSR)∗

نویسندگان

  • Bjørn-Helge Mevik
  • Henrik René Cederkvist
چکیده

The paper presents results from simulations based on real data, comparing several competing mean squared error of prediction (MSEP) estimators on principal components regression (PCR) and partial least squares regression (PLSR): leave-one-out crossvalidation, K-fold and adjusted K-fold cross-validation, the ordinary bootstrap estimate, the bootstrap smoothed cross-validation (BCV) estimate and the 0.632 bootstrap estimate. The overall performance of the estimators is compared in terms of their bias, variance and squared error. The results indicate that the 0.632 estimate and leave-one-out crossvalidation are preferable when one can afford the computation. Otherwise adjusted 5or 10-fold cross-validation are good candidates because of their computational efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Analysis of Panax ginseng by FT-NIR Spectroscopy

Near-infrared spectroscopy (NIRS), a rapid and efficient tool, was used to determine the total amount of nine ginsenosides in Panax ginseng. In the study, the regression models were established using multivariate regression methods with the results from conventional chemical analytical methods as reference values. The multivariate regression methods, partial least squares regression (PLSR) and ...

متن کامل

Local Linear Embedded Regression in the Quantitative Analysis of Glucose in Near Infrared Spectra

This paper investigates the use of Local Linear Embedded Regression (LLER) for the quantitative analysis of glucose from near infrared spectra. The performance of the LLER model is evaluated and compared with the regression techniques Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR) both with and without pre-processing. The predic...

متن کامل

Simultaneous spectrophotometric determination of carbidopa and levodopa by partial least squares regression, principal component regression and least squares support vector machine methods

Three chemometric methods; partial least squares regression (PLS), principal component regression (PCR) and least-squares support vector machines (LS-SVM) were applied for simultaneous determination of carbidopa and levodopa in synthetic mixtures and real samples. The simultaneous determination of these drugs is a difficult problem due to spectral interferences. The proposed methods were used f...

متن کامل

Shrinkage structure in biased regression

Biased regression is an alternative to ordinary least squares (OLS) regression, especially when explanatory variables are highly correlated. In this paper, we examine the geometrical structure of the shrinkage factors of biased estimators. We show that, in most cases, shrinkage factors cannot belong to [0, 1] in all directions. We also compare the shrinkage factors of ridge regression (RR), pri...

متن کامل

The pls Package: Principal Component and Partial Least Squares Regression in R

The pls package implements principal component regression (PCR) and partial least squares regression (PLSR) in R (R Development Core Team 2006b), and is freely available from the Comprehensive R Archive Network (CRAN), licensed under the GNU General Public License (GPL). The user interface is modelled after the traditional formula interface, as exemplified by lm. This was done so that people us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005